Genomic and Physiological Analysis of Carbon Storage in the Verrucomicrobial Methanotroph “Ca. Methylacidiphilum Fumariolicum” SolV
نویسندگان
چکیده
"Candidatus Methylacidiphilum fumariolicum" SolV is a verrucomicrobial methanotroph that can grow in extremely acidic environments at high temperature. Strain SolV fixes carbon dioxide (CO(2)) via the Calvin-Benson-Bassham cycle with methane as energy source, a trait so far very unusual in methanotrophs. In this study, the ability of "Ca. M. fumariolicum" to store carbon was explored by genome analysis, physiological studies, and electron microscopy. When cell cultures were depleted for nitrogen, glycogen storage was clearly observed in cytoplasmic storage vesicles by electron microscopy. After cessation of growth, the dry weight kept increasing and the bacteria were filled up almost entirely by glycogen. This was confirmed by biochemical analysis, which showed that glycogen accumulated to 36% of the total dry weight of the cells. When methane was removed from the culture, this glycogen was consumed within 47 days. During the period of glycogen consumption, the bacteria kept their viability high when compared to bacteria without glycogen (from cultures growing exponentially). The latter bacteria lost viability already after a few days when starved for methane. Analysis of the draft genome of "Ca. M. fumariolicum" SolV demonstrated that all known genes for glycogen storage and degradation were present and also transcribed. Phylogenetic analysis of these genes showed that they form a separate cluster with "Ca. M. infernorum" V4, and the most closely related other sequences only have an identity of 40%. This study presents the first physiological evidence of glycogen storage in the phylum Verrucomicrobia and indicates that carbon storage is important for survival at times of methane starvation.
منابع مشابه
Nitrogen fixation by the verrucomicrobial methanotroph 'Methylacidiphilum fumariolicum' SolV.
The ability to utilize atmospheric nitrogen (N(2)) as a sole nitrogen source is an important trait for prokaryotes. Knowledge of N(2) fixation by methanotrophs is needed to understand their role in nitrogen cycling in different environments. The verrucomicrobial methanotroph 'Methylacidiphilum fumariolicum' strain SolV was investigated for its ability to fix N(2). Physiological studies were com...
متن کاملMetabolic Regulation of “Ca. Methylacidiphilum Fumariolicum” SolV Cells Grown Under Different Nitrogen and Oxygen Limitations
Aerobic methanotrophic bacteria can use methane as their sole energy source. The discovery of "Ca. Methylacidiphilum fumariolicum" strain SolV and other verrucomicrobial methanotrophs has revealed that the ability of bacteria to oxidize CH(4) is much more diverse than has previously been assumed in terms of ecology, phylogeny, and physiology. A remarkable characteristic of the methane-oxidizing...
متن کاملDraft genome sequence of the volcano-inhabiting thermoacidophilic methanotroph Methylacidiphilum fumariolicum strain SolV.
The draft genome of Methylacidiphilum fumariolicum SolV, a thermoacidophilic methanotroph of the phylum Verrucomicrobia, is presented. Annotation revealed pathways for one-carbon, nitrogen, and hydrogen catabolism and respiration together with central metabolic pathways. The genome encodes three orthologues of particulate methane monooxygenases. Sequencing of this genome will help in the unders...
متن کاملAmmonia Oxidation and Nitrite Reduction in the Verrucomicrobial Methanotroph Methylacidiphilum fumariolicum SolV
The Solfatara volcano near Naples (Italy), the origin of the recently discovered verrucomicrobial methanotroph Methylacidiphilum fumariolicum SolV was shown to contain ammonium ([Formula: see text]) at concentrations ranging from 1 to 28 mM. Ammonia (NH3) can be converted to toxic hydroxylamine (NH2OH) by the particulate methane monooxygenase (pMMO), the first enzyme of the methane (CH4) oxidat...
متن کاملDetection of autotrophic verrucomicrobial methanotrophs in a geothermal environment using stable isotope probing
Genomic analysis of the methanotrophic verrucomicrobium "Methylacidiphilum infernorum" strain V4 has shown that most pathways conferring its methanotrophic lifestyle are similar to those found in proteobacterial methanotrophs. However, due to the large sequence divergence of its methane monooxygenase-encoding genes (pmo), "universal" pmoA polymerase chain reaction (PCR) primers do not target th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 3 شماره
صفحات -
تاریخ انتشار 2012